

Multidrug-resistant *Mycobacterium tuberculosis* and associated risk factors in Oromia Region of Ethiopia

Girma Mulisa ^{a,*}, Tilaye Workneh ^a, Niguse Hordofa ^b, Mohamed Suaudi ^b, Gemedha Abebe ^c, Godana Jarso ^a

^aAdama Hospital Medical College, PO Box 84, Adama, Ethiopia

^bOromia Public Health Laboratory, Adama, Ethiopia

^cLaboratory of Mycobacteriology, Institute of Biotechnology, Jimma University, Jimma, Ethiopia

ARTICLE INFO

Article history:

Received 10 December 2014

Received in revised form 6 August 2015

Accepted 17 August 2015

Corresponding Editor: Eskild Petersen,
Aarhus, Denmark.

Keywords:

Risk factors

MDR-TB

Ethiopia

Africa

SUMMARY

Objective: The aim of this study was to determine risk factors for tuberculosis (TB) caused by multidrug-resistant *Mycobacterium tuberculosis* (MDR-TB) in Oromia Region, Ethiopia.

Methods: A 6-month case-control study was performed in 2013–14. Sputum samples and standardized questionnaire data (demographics, treatment, TB contact history, underlying disease, history of imprisonment) were collected from cases with suspected MDR-TB aged ≥ 18 years. Sputum was processed locally in the Oromia Public Health Laboratory using standard techniques. Data from MDR-TB cases and TB-positive controls were compared using logistic regression analysis. For each factor, the association with outcome variables was estimated by calculating the odds ratio (OR) together with the 95% confidence interval (95% CI).

Results: Of 439 suspected MDR-TB cases, 265 had a confirmed *M. tuberculosis* infection, of whom 88 (33%) had laboratory-confirmed MDR-TB. Over two-thirds (65%) were between 18 and 39 years of age. On multivariate analysis, an occupation of farming, known TB contact history, alcohol use, HIV infection, previous known TB history, and previous TB treatment outcome were predictors of MDR-TB.

Conclusions: The rate of MDR-TB was high among suspected cases in the Oromia Region of Ethiopia. Local MDR-TB detection capacity and local epidemiology studies are essential to detect MDR-TB and guide the use of the sparse resources to optimize MDR-TB control. If TB is suspected, the presence of any of the above factors should alert Oromia Region clinicians and public health professionals to screen for MDR-TB.

© 2015 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

1. Introduction

Multidrug-resistant tuberculosis (MDR-TB) has become an increasing threat to the global control of TB,¹ as it complicates the management and control of the disease.^{2–4} MDR-TB is a form of drug-resistant TB in which *Mycobacterium tuberculosis* can no longer be killed by the two best antibiotics most commonly used to cure TB, isoniazid and rifampicin.⁵ Unless the individuals infected with resistant strains of *M. tuberculosis* are treated appropriately, resistant strains will continue to spread in the community, accelerating the epidemic. The impact of MDR-TB is especially serious in low-income countries like Ethiopia, where health

resources, finances, and the skilled personnel required for diagnosis and management are limited, making containment and the prevention of further spread more difficult.⁶

In Africa, resistance to anti-TB drugs had been assumed to be low.⁷ However, more recently, drug-resistant TB has been recognized as a major concern.^{8–14} The report of large numbers of cases of MDR-TB and extensively drug-resistant *M. tuberculosis* in South Africa likely represents an unrecognized and continent-wide epidemic rather than simply sporadic or localized outbreaks.⁴

Both primary and retreatment cases of MDR-TB have already been reported in Ethiopia.¹⁵ In 2011, the Ethiopian National Tuberculosis Control and Prevention Program reported that the rate of MDR-TB among retreatment cases was 12% and among new cases 1.6%.¹⁶ Facility-based studies confirmed that MDR-TB indeed represented a growing problem in Ethiopia,^{17–21} with an increasing trend in drug resistance in retreatment cases.²²

* Corresponding author. Tel.: +2519111928774.

E-mail address: girmamulisa30@gmail.com (G. Mulisa).

These rising rates of MDR-TB signal the importance of determining the associated risk factors in Ethiopia in order to better prioritize interventions to curb the development and spread of MDR-TB. That study showed that previous treatment with second-line anti-tuberculosis drugs were risk factors for the emergence of MDR-TB. It is known that second line drugs are administered to the patient if the case is confirmed to be MDR-TB, but those study enrolled patients who used second line drugs and see for the outcome.^{23–29} Other reported associated factors include previous hospitalization, having a household member with MDR-TB,³⁰ older age (45–64 years), male sex,²³ underlying health conditions like HIV infection and diabetes mellitus,^{25–27} personal behaviours like alcoholism and smoking, and poor socio-economic conditions (poverty).^{23,25}

The aim of this study was to identify the risk factors for MDR-TB in the Oromia Region of Ethiopia in order to better tailor MDR-TB prevention and early intervention strategies. Oromia Regional State was selected purposively as it has an established MDR-TB surveillance program, is the largest state in Ethiopia in terms of population, with an estimated population in 2011 of just over 30 million, and the landmass occupies over one third of Ethiopia.³¹

2. Methods

An unmatched case-control study design was employed. Data were collected during a 6-month period from October 1, 2013 to March 30, 2014 using a structured questionnaire at the time of sputum collection from all cases suspected of MDR-TB over 18 years of age. Patients were categorized as suspected MDR-TB cases if they met one or more of the following conditions: failure after retreatment, primary treatment failure, symptomatic close contact with a confirmed MDR-TB patient, symptomatic close contact health care workers with TB, a new TB patient who remained sputum smear-positive after 2 months of treatment, or a retreatment patient remaining sputum smear-positive after 3 months, based on guidelines for program and clinical management of drug-resistant TB.³² Following laboratory assessment, cases were then classified as confirmed MDR-TB patients or as controls, i.e., non-MDR-TB.

After obtaining verbal consent from the study participants from the different zones of Oromia Region, a trained and experienced laboratory technologist collected the questionnaire data and sputum from the suspected MDR-TB cases. Sputum samples were collected according to the national guideline for sputum collection for the laboratory diagnosis of TB. Spot morning sputum samples were collected aseptically in 50-ml sterile Falcon tubes and the samples were then transported to Oromia Public Health Laboratory using a triple packaging cold chain. Samples were processed using standard bacteriological techniques for *M. tuberculosis*.³³ The bacteria were detected and isolated using Ziehl-Neelsen staining, Löwenstein-Jensen medium, and Xpert MTB/RIF. Susceptibility testing of the isolates was done using molecular techniques with a line probe assay (Hain Lifescience, Germany; version 2) for smear- or culture-positive samples and low Xpert MTB/RIF-positive samples directly from a decontaminated sample. The DNA was extracted using Genolysse chemical version 2 and the Genolysse kit method. The Xpert MTB/RIF system (Cepheid, GeneXpert, USA)³⁴ was also used to determine the susceptibility of smear- and culture-negative samples.

Data were exported from Epi Info version 3.5.1 to IBM-SPSS version 20.0 for analysis. Bivariate conditional logistic regression analysis was used to evaluate the association between dependent (MDR-TB) and independent variables (age, sex, occupation, previous treatment history, residence, underlying disease, education status, TB patient contact history, history of imprisonment, etc). For each of the study factors, the association was estimated by calculating the odds ratio (OR) together with the 95% confidence interval (95% CI). The association between MDR-TB

and independent variables was considered statistically significant at a *p*-value of less than 0.05. Multiple logistic regression analysis was then carried out to determine which of the dependent variables were predictors of MDR-TB.

This study received funding support and research ethics approval from Adama Hospital Medical College, Adama, Ethiopia, and mentoring support from MicroResearch (<http://www.microresearch.ca>).

3. Results

A total of 439 individuals with presumptive MDR-TB had sputum samples collected during the 6-month study period and were interviewed using the structured questionnaire for their socio-demographic background and other risk factors. Sixty percent (265/439) of sputum samples collected from those with suspected MDR-TB were positive for *M. tuberculosis*. Of these 265 *M. tuberculosis*-positive samples, 33.2% (88/265) were MDR-TB cases.

Almost two-thirds of the study participants (65.3%) were aged between 18 and 39 years. More males than females had MDR-TB (57% vs. 43%), and this sex difference was similar in controls (59% vs. 41%). On univariate analysis, MDR-TB was significantly associated with occupation; being a farmer increased the risk of occurrence of MDR-TB three-fold compared to an employee (OR 3.3, 95% CI 1.52–7.55). Likewise, a lack of formal education compared to high school certificate (OR 3.5, 95% CI 1.45–8.43) and rural compared to urban residence (OR 2.7, 95% CI 1.54–4.85) increased the risk of occurrence of MDR-TB by 3.5 and 2.7 times, respectively (Table 1). Personal behavioural factors like alcohol use, chat chewing, concurrent chronic disease, previous TB history, antacid use for gastritis treatment while being treated for TB, and previous unfavourable TB treatment outcome were also significantly associated with the development of MDR-TB (Table 2).

The multiple logistic regression model indicated that occupation, known TB contact history, alcohol use, concurrent disease like HIV/AIDS, previous known TB history, and previous TB treatment outcome were predictors of MDR-TB (Table 3).

4. Discussion

In Oromia Region, the largest state in Ethiopia by population and by area, the rate of MDR-TB was 33% among presumptive MDR-TB cases. This is in contrast to the rate of 15.3% reported in Amhara National Regional State, Ethiopia.³⁵ The higher rate in Oromia State may be due to differences in study participant selection. In the present study, participants with suspected MDR-TB were selected. A similar study conducted in India found a prevalence of MDR-TB of 53% among patients suspected to have MDR-TB,³⁶ a far higher rate, possibly attributable to differences in clinical screening quality, risk factors, case detection, and prevalence rates of MDR-TB.

In the present study, a known TB contact history, alcohol use, HIV infection, previous known TB history, and previous TB treatment outcome were predictors of MDR-TB. Many of these factors have been reported before, but several differences were also seen. In contrast to studies conducted in China³⁷ and several other countries (Estonia, Latvia, Peru, Philippines, Russia, South Africa, South Korea, and Thailand),^{23,24} socio-demographic factors like sex, older age (45–64 years), and marital status did not correlate with the occurrence of MDR-TB in Oromia Region. Of particular note, over 40% of the MDR-TB cases were women and women of reproductive age. This has important public health implications for pregnancy and for their children. While the association of MDR-TB with HIV has been reported elsewhere,^{25–27} it was not strongly associated in an earlier review from Ethiopia,³⁸ or in studies from Mozambique or Iran.^{39,40} In this study in Oromia

Table 1

Association of socio-demographic factors with MDR-TB among presumptive MDR-TB cases in Oromia Region, Ethiopia, April 2014

Variables		MDR Number (%) (n = 88)	Non-MDR Number (%) (n = 177)	p-Value	Crude OR (95% CI)
Age (in completed years)	18–39	46 (63.9)	127 (71.8)	0.24	1.5 (0.75–3.05)
	40–54	16 (22.2)	29 (16.4)		1
	≥55	10 (13.9)	21 (11.9)	0.77	1.1 (0.44–3.05)
Sex	Male	50 (56.8)	104 (58.1)	0.76	1.0 (0.64–1.81)
	Female	38 (43.2)	73 (41.2)		1
Marital status	Single	18 (21.4)	44 (25.0)		1
	Married	63 (75)	123 (69.9)	0.48	0.8 (0.19–3.36)
	Others	3 (3.6)	9 (5.1)	0.77	0.6 (0.17–2.48)
Family size	≤6	59 (81.9)	128 (76.6)		1
	>6	13 (18.1)	44 (25.6)	0.21	0.6 (0.32–1.28)
Occupation	Employee	21 (23.9)	21 (12.0)		1
	Housewife	24 (27.3)	34 (19.4)	0.39	1.4 (0.63–3.15)
	Daily labourer	14 (15.9)	27 (15.4)	0.15	1.9 (0.79–4.67)
Educational status	Farmer	18 (20.5)	61 (34.9)	0.003	3.3 (1.52–7.55)
	Other	11 (12.5)	32 (18.3)	0.02	2.9 (1.16–7.25)
	No formal education	13 (14.8)	48 (27.1)	0.005	3.5 (1.45–8.43)
Residence	Elementary	49 (55.7)	90 (50.8)	0.13	1.7 (0.85–3.57)
	High school	19 (21.6)	20 (11.3)		1
	Tertiary	7 (8.0)	19 (10.7)	0.08	2.5 (0.88–7.51)
Residence	Urban	56 (70.9)	80 (54.6)		1
	Rural	23 (29.1)	90 (45.4)	0.001	2.7 (1.54–4.85)

MDR-TB, multidrug-resistant tuberculosis; OR, odds ratio; CI, confidence interval.

Region, HIV infection was significantly associated with the occurrence of MDR-TB on multivariate analysis. The association of a positive TB patient contact history seen in Oromia Region is similar to findings in Bangladesh,⁴¹ but is in contrast to findings in Iran.³⁹ In Oromia Region, personal behaviours like smoking and chat chewing were not predictors of MDR-TB on multivariate analysis, while alcohol use was associated. Studies from India, Lithuania, and Botswana have also shown alcohol use to be associated with MDR-TB,^{42–44} but this relationship was not seen in Nepal,²⁶ suggesting that it may be context-related, i.e., related to local drinking habits. In this study in Oromia, only current alcohol use was questioned – not longstanding alcohol habits.

There are several limitations to this study. Confounding factors like TB drug quality, drug malabsorption, and poor drug compliance could not be controlled for. Furthermore the study only focused on suspected MDR-TB cases who could produce sputum. Suspected cases were patients with failure after retreatment, treatment failure, symptomatic close contact with a confirmed

MDR-TB patient, and symptomatic close contact health care workers with TB. New TB patients who remained sputum smear-positive after 2 months of treatment, as well as retreatment patients remaining sputum smear-positive after 3 months were also included in the study. Patients not meeting these criteria and those below the age of 18 years were excluded. Given that women of childbearing age were well-represented among the MDR-TB cases (43%), there may indeed be children with MDR-TB among their close contacts. Since Oromia Region is predominately rural, factors associated with urban MDR-TB were also not identified. Hence generalizing these MDR-TB associated factors to all of Ethiopia is not possible. However, these factors may apply to other predominantly rural populations in Ethiopia and possibly those in other nearby countries with similar cultures.

The differences and similarities between factors associated with MDR-TB in Oromia Region compared to other countries emphasize the importance of collecting relevant data to identify local risk factors for MDR-TB. Studies like the one done in Oromia

Table 2

Association of clinical and behavioural factors with MDR-TB among suspected MDR-TB cases in Oromia Region, Ethiopia, April 2014

Variables		Cases Number (%)	Controls Number (%)	p-Value	Crude OR (95% CI)
History of imprisonment	Yes	4 (5.6)	8 (9.2)	0.41	1.7 (0.48–5.88)
	No	67 (94.4)	79 (90.8)		1
History of TB contact	Yes	9 (13.0)	25 (29.8)	0.02	2.8 (1.21–6.56)
	No	60 (87.0)	59 (70.2)		1
HIV infection	Positive	17 (19.5)	84 (60.4)	0.01	2.7 (1.43–5.06)
	Negative	70 (80.5)	55 (39.6)		1
Smoking	Yes	10 (11.5)	24 (13.6)	0.61	1.2 (0.55–2.67)
	No	77 (88.5)	152 (86.4)		1
Chronic alcohol drinker	Yes	10 (11.6)	62 (35.2)	0.001	4.1 (1.99–8.56)
	No	76 (88.4)	114 (64.8)		1
Chat chewing	Yes	12 (13.8)	32 (18.2)	0.35	1.4 (0.67–2.85)
	No	75 (86.2)	144 (81.8)		1
Chronic antacid use	Yes	15 (21.4)	9 (6.7)	0.003	3.8 (1.57–9.25)
	No	55 (78.6)	126 (93.3)		1
Previous TB history	Yes	80 (90.9)	116 (65.5)	0.001	5.2 (2.38–11.58)
	No	8 (9.1)	61 (34.5)		1
Previous TB treatment outcome	Cured	7 (8.1)	14 (11.9)		1
	Completed	6 (7.0)	31 (26.3)	0.14	0.4 (0.11–1.36)
	Failure	70 (81.0)	50 (42.4)	0.03	2.8 (1.05–7.43)
	Defaulter	3 (3.5)	23 (19.5)	0.08	0.26 (0.05–1.17)

MDR-TB, multidrug-resistant tuberculosis; OR, odds ratio; CI, confidence interval.

Table 3

Predictors of MDR-TB with MDR-TB among suspected MDR-TB cases in Oromia Region, Ethiopia, April 2014

Variables		Cases Number (%)	Controls Number (%)	Crude OR (95% CI)	Adjusted OR (95% CI)
Occupation	Employee	21 (23.9)	21 (12.0)	1	1
	Housewife	24 (27.3)	34 (19.4)	1.4 (0.63–3.15)	3.4 (0.39–9.27)
	Daily labourer	14 (15.9)	27 (15.4)	1.9 (0.79–4.67)	4.3 (0.61–8.32)
	Farmer	18 (20.5)	61 (34.9)	3.3 (1.52–7.55)	4.8 (1.07–11.98)
Educational level	Other	11 (12.5)	32 (18.3)	2.9 (1.16–7.25)	3.5 (1.85–9.97)
	No formal education	13 (14.8)	48 (27.1)	3.5 (1.45–8.43)	0.8 (0.10–6.24)
	Elementary	49 (55.7)	90 (50.8)	1.7 (0.85–3.57)	0.2 (0.02–1.29)
	High school	19 (21.6)	20 (11.3)	1	1
TB contact history	Tertiary				0.3 (0.03–2.48)
	Yes	9 (13.0)	25 (29.8)	2.8 (1.21–6.56)	6.6 (1.48–29.60)
Alcohol use	No	60 (87.0)	59 (70.2)	1	1
	Yes	10 (11.6)	62 (35.2)	4.1 (1.99–8.56)	2.6 (1.57–12.5)
Chronic antacid use	No	55 (78.6)	126 (93.3)	1	1
	Yes	15 (21.4)	9 (6.7)	3.8 (1.57–9.25)	0.2 (0.03–2.32)
HIV infection	Negative	70 (80.5)	84 (60.4)	1	1
	Positive	17 (19.5)	55 (39.6)	2.7 (1.43–5.06)	1.4 (1.03–6.71)
Previous TB history	No	8 (9.1)	61 (34.5)	1	1
	Yes	80 (90.9)	116 (65.5)	5.2 (2.38–11.58)	2.6 (1.13–6.78)
Previous TB treatment outcome	Failure	70 (81)	1.50 (42.4)	2.8 (1.05–7.43)	3.5 (1.57–6.99)
	Defaulter	3 (3.5)	23 (19.5)	0.26 (0.05–1.17)	0.3 (0.21–3.46)
	Cured	7 (8.1)	14 (11.9)	1	1
	Completed	6 (7)	31 (26.3)	0.4 (0.11–1.36)	1.3 (0.25–4.31)

MDR-TB, multidrug-resistant tuberculosis; OR, odds ratio; CI, confidence interval.

need to be repeated on a regular basis to determine whether factors are changing.

In conclusion, in Oromia Region in Ethiopia, on multivariate analysis, occupation (being a farmer), known TB contact history, alcohol use, HIV infection, previous known TB history, and previous TB treatment outcome were predictors of MDR-TB. Many were women of childbearing age, thus their children are at risk. With knowledge of these risk factors, a focus on MDR-TB diagnosis and care for TB patients with identified risks needs to be a high priority in the TB program to help curb the MDR-TB epidemic in Oromia Region. This study emphasizes the importance of having local capacity for the detection of MDR-TB and the need for local epidemiology studies so results can guide the use of the sparse resources to optimize their impact.

Acknowledgements

We much appreciate Oromia Public Health Laboratory for the laboratory isolation and characterization of the organisms. We also thank Mr Feleke Belachow for his contributions during proposal development and data collection. Our deep gratitude goes to MicroResearch teachers (<http://www.microresearch.ca>), especially Professor Noni E. MacDonald, Dalhousie University, Halifax, Canada for their devoted mentoring and help with editing and review of the manuscript.

Conflict of interest: No competing interests.

References

1. World Health Organization. Global tuberculosis control report 2012. WHO/HTM/TB/2012.6. Geneva, Switzerland: WHO; 2012.
2. Varaine F, Henekens M, Grouzand V. *Tuberculosis: practical guide for clinicians, nurses, laboratory technicians and medical auxiliaries*, 5th ed., Paris: Médecins Sans Frontières; 2010.
3. World Health Organization. Towards universal access to diagnosis and treatment of multidrug-resistant and extensively drug-resistant tuberculosis by 2015. WHO Progress Report 2011. Geneva, Switzerland: WHO; 2011.
4. Andrews JR, Shah NS, Gandhi N, Moll T, Friedland G, Tugela Ferry Care and Research (TF CARES) Collaboration. Multidrug-resistant and extensively drug-resistant tuberculosis: implications for the HIV epidemic and antiretroviral therapy rollout in South Africa. *J Infect Dis* 2007;196:S482–90.
5. World Health Organization. Definitions and reporting framework for tuberculosis—2013 revision (updated December 2014). Geneva, Switzerland: WHO; 2013
6. World Health Organization. Global tuberculosis control: WHO report. WHO/HTM/TB/2011.16. Geneva, Switzerland: WHO; 2011.
7. World Health Organization. Anti-tuberculosis resistance in the world. Report No. 4. Geneva, Switzerland: WHO; 2008.
8. Wallengren K, Scano F, Nunn P. *Drug-resistant tuberculosis, KwaZulu-Natal, South Africa, 2001–2007*. *Emerg Infect Dis* 2011;17:1913–6.
9. Weyer K, Vander Walt M, Brand J, Lancaster J, Levin J. Survey of tuberculosis drug resistance in South Africa: final report. Pretoria, South Africa: Medical Research Council; 2004. Available at: <http://www.mrc.ac.za/operationaltb/reports.htm> (accessed May 7, 2011).
10. Institute of Medicine. Addressing the threat of drug-resistant tuberculosis. A realistic assessment of the challenge. Workshop summary, 2008 Nov 5. Washington: National Academies Press; 2009. Available at: <http://www.ncbi.nlm.nih.gov/books/NBK45006/pdf/TOC.pdf> (accessed May 7, 2011).
11. Ben Amor Y, Nemser B, Singh A, Sankin A, Schluger N. Underreported threat of multidrug-resistant tuberculosis in Africa. *Emerg Infect Dis* 2008;14:1345–52. <http://dx.doi.org/10.3201/eid1409.061524>.
12. Cohen T, Colijn C, Wright A, Zignol M, Pym A, Murray M. Challenges in estimating the total burden of drug-resistant tuberculosis. *Am J Respir Crit Care Med* 2008;177:1302–6. <http://dx.doi.org/10.1164/rccm.200801-175PP>.
13. Nunes EA, De Capitani EM, Coelho E, Joaquim OA, Figueiredo IRO, Cossa AM, et al. Patterns of anti-tuberculosis drug resistance among HIV-infected patients in Maputo, Mozambique, 2002–2003. *Int J Tuberc Lung Dis* 2005;9:494–500.
14. Menzies HJ, Moalosi G, Anisimova V, Gammino V, Sentele C, Bachhuber MA, et al. The trend of resistance to anti-tuberculosis drugs in Botswana: results from the 4th national anti-tuberculosis drug resistance survey. In: Abstracts of the 40th Union World Conference on Lung Health; *Int J Tuberc Lung Dis* 2009;13(Suppl 1):S3 [cited 2011 May 7].
15. Abebe G, Abdissa K, Abdissa A, Apers L, Agonafir M, de-Jong BC, et al. Relatively low primary drug resistant tuberculosis in southwestern Ethiopia. *BMC Res Notes* 2012;5:225.
16. Federal Ministry of Health. Tuberculosis, leprosy and TB/HIV prevention and control program manual. 5th ed. Addis Ababa, Ethiopia: FMOH; 2012.
17. Gebeyehu M, Lemma E, Eyob G. Prevalence of drug resistant tuberculosis in Arsi Zone, Ethiopia. *Ethiopian Journal of Health Development* 2001;15:11–6.
18. Asmamaw D, Seyoum B, Makonnen E, Atsbeha H, Woldemeskel D, Yamuah L, et al. Primary drug resistance in newly diagnosed smear positive tuberculosis patients in Addis Ababa, Ethiopia. *Ethiop Med J* 2008;46:367–74.
19. Meskel DW, Abate G, Lakew M, Goshu S, Aseffa A. Anti-tuberculosis drug resistance among retreatment patients seen at St Peter Tuberculosis Specialized Hospital. *Ethiop Med J* 2008;46:219–25.
20. Abate G, Miorner H, Ahmed O, Hoffner SE. Drug resistance in *Mycobacterium tuberculosis* strains isolated from re-treatment cases of pulmonary tuberculosis in Ethiopia: susceptibility to first-line and alternative drugs. *Int J Tuberc Lung Dis* 1998;2:580–4.
21. Mitike G, Kebede D, Yeneneh H. Prevalence of antituberculosis drug resistance in Harar Tuberculosis Centre, Ethiopia. *East Afr Med J* 1997;74:158–61.
22. Abate D, Taye B, Abseno M, Biadgilign S. Epidemiology of anti-tuberculosis drug resistance patterns and trends in tuberculosis referral hospital in Addis Ababa, Ethiopia. *BMC Res Notes* 2012;5:462.
23. Ahmad M, Salih, Muayad A, Merza. Risk factors for multi-drug resistant tuberculosis: a review. *Duhok Medical Journal* 2010;4(2):1–7.

24. Dalton T, Cegielski P, Akksilp S. Prevalence of and risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in eight countries: a prospective cohort study. *Lancet* 2012;380:1406–17.
25. Zhao P, Li XJ, Zhang SF, Wang XS, Liu CY. Social behaviour risk factors for drug resistant tuberculosis in mainland China: a meta-analysis. *J Int Med Res* 2012;40:436–45.
26. Marahatta SB, Kaewkungwa J, Ramasoota P, Singhasivanon P. Risk factors of multidrug resistant tuberculosis in central Nepal: a pilot study. *Kathmandu University Medical Journal* 2010;9:392–7.
27. Baghaei P, Tabarsi P, Chitsaz E, Novin A, Alipanah N, Kazempour M, et al. Risk factors associated with multidrug-resistant tuberculosis. *Tanaffos* 2009;8(3):17–21.
28. Selimoglu H, Abakay O, Dalli A. Predisposing factors for multi drug resistant tuberculosis in Southeast Region of Turkey. *Afr J Microbiol Res* 2012;6:6730–5.
29. Wahab F, Ashraf S, Khan N, Anwar R, Zaman M. Risk factors for multi-drug resistant tuberculosis in patients at tertiary care hospital, Peshawar. *J Coll Physicians Surg Pak* 2009;19:162–4.
30. Ricks PM, Mavhunga F, Modi S, Indongo R, Zezai A, Lambert LA, et al. Characteristics of multidrug-resistant tuberculosis in Namibia. *BMC Infect Dis* 2012;12:385.
31. The National Regional State of Oromia. Oromia National Regional State in brief. Part IV. BoFED, RD&ICP; 2012.
32. Federal Ministry of Health. Guideline for program and clinical management of drug resistant tuberculosis. 1st ed. Addis Ababa, Ethiopia: FMOH; 2009. Available at: <http://www.etharc.org/resources/download/finish/66/367> (accessed February 12, 2013).
33. Caminero JA. Guidelines for clinical and operational management of drug-resistant tuberculosis. Paris, France: International Union Against Tuberculosis and Lung Disease; 2013.
34. UNITAID. Tuberculosis diagnostic technology landscape. Geneva, Switzerland: WHO; 2012.
35. Manda SO, Masengetse LJ, Lancaster JL, van der Walt ML. Risk of death among HIV co-infected multidrug resistant tuberculosis patients, compared to mortality in the general population of South Africa. *J AIDS Clin Res* 2013;3:1–12.
36. Berhan A, Berhan Y, Yizengaw D. A meta-analysis of drug resistant tuberculosis in Sub-Saharan Africa: how strongly associated with previous treatment and HIV co-infection? *Ethiop J Health Sci* 2013;23:271–82.
37. Farazi A, Sofian M, Zarrinpar N, Katabi F, Hoseini SD, Keshavarz R. Drug resistance pattern and associated risk factors of tuberculosis patients in the central province of Iran. *Caspian J Intern Med* 2013;4:785–9.
38. Samo Gudo P, Cuna Z, Coelho E, Maungate S, Borroni E, Miotti P, et al. Is MDR-TB on the rise in Mozambique? Results of a national drug resistant survey. *Eur Respir J* 2011;38(1):222–5.
39. Flora MS, Amin MN, Karim MR, Afroz S, Islam S, Alam A, Hossain M. Risk factors of multi-drug-resistant tuberculosis in Bangladeshi population: a case control study. *Bangladesh Med Res Coun Bull* 2013;39:34–41.
40. Duraisamy K, Mirthyuniyan S, Ghosh S, Nair SA, Balakrishnan S, Subramoniapillai J, et al. Does alcohol consumption during multidrug-resistant tuberculosis treatment affect outcome? A population-based study in Kerala, India. *Ann Am Thorac Soc* 2014;11(5):712–8.
41. Balabanova Y, Radulyte B, Davydaviciene E, Hooper R, Ignatyeva O, Nikolayevskyy V, et al. Survival of drug resistant tuberculosis patients in Lithuania: retrospective national cohort study. *BMJ Open* 2011;1:e000351. <http://dx.doi.org/10.1136/bmjjopen-2011-000351>.
42. Zetola NM, Modongo C, Kip EC, Gross R, Bisson GP, Collman RG. Alcohol use and abuse among patients with multidrug-resistant tuberculosis in Botswana. *Int J Tuberc Lung Dis* 2012;16:1529–34.
43. Nigus DM, Lingerew WM, Beyene BA, Tamiru AA, Lemma MT, Melaku MY. Prevalence of multi drug resistant tuberculosis among presumptive multi drug resistant tuberculosis cases in Amhara National Regional State, Ethiopia. *J Mycobac Dis* 2014;4(3):1–6.
44. Pradhan N, Desai S, Kagal A, Dharmashale S, Bharadwaj R, Ghorpade S, et al. Patterns of TB drug-resistance in a tertiary care facility in Pune, India. *Clin Microbiol* 2013;2(6):1–3.